Beatrice Lerma is a designer and PhD research fellow at the Department of Architecture and Design, adjunct lecturer at the Design and Visual Communication graduate course, Politecnico di Torino. Since 2010 she has worked on the development of the MATto materials library. Her research focuses on materials, innovative production processes, sensoriality, sustainability and perceived quality.

Doriana Dal Palù is doctorate student in Technological Innovation for Built Environment. Passionate in multisensory design, she deals with auditory perception in her doctorate research, aimed at supporting the design of product sounds. She is currently teaching assistant at the Concept Design and Exploring Design laboratories at Politecnico di Torino.

“We can affirm that the invisible aspects of design are linked to product sensory attributes that are closely correlated with these instrumental measures”

Material (and product) sensoriality: Can perceptive evaluations strengthen the meta-design phase?

Products are no longer asked to perform only based on how they performed mostly in the past. They are now expected indeed to consider contemporary social changes and deliver “soft” and non-visual performance, such as greater sensory expression and complex performances, in order to improve the quality and affordability of user experience. This renewed focus on the “invisible aspects of design” generates a space of scientific interest in the design domain, focusing on the need to learn, develop and spread the most suitable tools and methodologies to support the sensory-oriented project, and integrate this fundamental requirement in the early stages of product (or service) design, in other words, focusing on the sensory aspect since the meta-design phase. This paper will present a first overview on the theme of designing the perceptive aspect of a product, showing how this topic has evolved over the years and how material libraries and products themselves are focusing the proposed information and their features toward this aspect. A second part of the work will present a set of tools and methods, driven both from the qualitative and quantitative approach, to be used by designers in order to investigate the issue of perceptive evaluations, always bearing in mind that human beings are the key figures in this process. Subsequently, some crossed-senses tools are presented, as well as several further investigating tools able to define the synesthetic or global perception of a product. Finally some conclusions on the opportunities offered by these methods are discussed.
A new premise: multiplying the perception

Today, the issue of multisensory product experience appears to be at the forefront of design research [Schifferstein & Desmet, 2008; Lerma, De Giorgi & Allione, 2011], as well as in consumer science [Norman, 2004]. The experience of any product, physical object, service or space, derives from the multisensory response by the subject that comes into contact with the product itself. For many years, the immediacy and spontaneity of the visual approach in perception has supported several theories [Brendt, 1988] affirming life in a real “eye culture”. Nowadays, these theories are overtaken thanks to the proven collegiality of every sense in the perception process [Image 1], indeed, in real life it is very difficult to delimit perceptive experiences, uninter rupted and often unconscious, to one single sensorial channel [Bandini Buti et al., 2010].

Thus, the senses of touch, smell, hearing and taste have been rediscovered in the design phase, giving birth to more or less valid examples of products able to interact with a holistic sensory level with the user [Lévy, 2013; Wastiels et al., 2013]. So the question is: can sensations and perceptions be measured and evaluated in order to strengthen the meta-design phase?

A glance at the designed world

This renewed interest in the “invisible aspects of design” [Ferreri & Scarzella, 2009] generates a space of scientific interest in the design domain [Celaschi, 2008], focusing on the need to learn, develop and spread the most suitable tools to support the sensory-oriented project, and integrate this fundamental requirement at the early stage of the design of the product (or service), in other words in the meta-design phase [Germak, 2008].

More in depth, we can affirm that the invisible aspects of design are linked to product sensory attributes that are closely correlated with these instrumental measures [Rognoli & Levi, 2011]. For example, tactile material properties, such as softness or warmth, are linked to instrumental measurable physical properties such as Young’s module and thermal conductivity. Despite that, as Schifferstein and Wastiels underline [Schifferstein & Wastiels, 2014], none of the current measuring methods or models can describe a material-perceived softness. Moreover, material-perceived properties (gloss, softness, roughness, sound qualities) are difficult to measure but considered as an important collecting method in different material libraries (real and virtual library of innovative materials) and as an aspect to be considered during the choice of a material for a certain project.

"EYE-ORIENTED" DESIGN APPROACH

HEARING

SIGHT

TASTE

SMELL

"MULTISENSORY DESIGN APPROACH"

HEARING

SIGHT

TASTE

SMELL

touch

taste

sight

smell

Image 1. The evolution of the sensory design approach: from the primary role of sight to a more balanced global approach, considering every sense. Credits by the paper authors.

Functional properties will tend towards sensory perception and the sensory perception will be technical [González & Peña, 2013]. Industry can no longer ignore the sensory features of a product, whether it is a car or a toy, and choosing the most suitable material is a key factor in the revival of a good product and in its linked sensory experience.

In recent years material libraries have developed different methods to define the sensory characteristics of their catalogued materials. For example Materia in The Netherlands, Materfac in Barcelona, MATTo materials library of the Department of Architecture and Design DAD - Politecnico di Torino [Lerma, De Giorgi & Allione, 2011; De Giorgi, Allione & Lerma, 2010], Materiali e Design in Politecnico di Milano [Rognoli, 2005] and MatiSens by CerTeSens in France.

Simultaneously, designers conceive specific products in order to create new sensory or synesthetic experiences in users, far subtler and often more unconscious than the well-known "wow-effect" that states the desire to shock (and communicate with) the user. An example of a product designed exploiting the "wow-effect" is the Plopp stool by Oskar Zieta. This stool is a real paradox. Although the furniture seems very light, its construction obtained by hydro-formed metal is solid and durable (Image 2). With regard to unconscious sensory experiences, for example, Polish designers Marta Niemywksa-Grynaza and Dawid Grynaza conceived Czarka / Bowls (2015) for drinks whose walls are covered with a three-dimensional pattern. By also avoiding a slippery handle, apparently this product is intended. Finally, some applications of this method and these tools, even by matching two or more tools and senses (for example analyzing meta-project or product concepts to reinforce or weaken indications of choice made by the public for whom the product is intended. Finally, some applications of this method and these tools, even by matching two or more tools and senses (for example analyzing meta-project or product concepts to reinforce or weaken indications of choice made by the public for whom the product is intended).

"What characterizes the complexity in perception is really the intrinsic multidimensional nature combined with a subjective attitude"

Scientific approach vs. empirical approach
Having acknowledged the importance of perceptive features of materials, multisensory aspects have become important in the classification of materials in material libraries. In these archives, material classification is based either on a technical approach (reflectivity, heat conductivity, thermal properties, etc.) or on an empirical perceptive criteria [Lerma, De Giorgi & Allione, 2011]. Unfortunately it was evident, in the wide range of classification criteria relating to the sensorial characteristics of the materials, that there was a lack of a common language and vocabulary and a mainly empirical approach that is not based on scientific criteria. Various are the methods and the tools which can be used to define the sensory properties of materials. Some material libraries use sensory words and specific terminology to describe and catalogue materials from a sensorial point of view. Often materials are manipulated by the classification team and, as a result, the valuation is based on the experience and knowledge of the team member. A good procedure for material libraries would be to make use of trained ‘materials tasters’ to define the expressive-sensory properties of materials. Moreover, every institute develops its own classification and assessment system [Rognoli, 2005; De Giorgi & Lerma, 2010; Lucchelli, 2006]. It is thus not easy to understand the meaning of sensory terminology (what degree is a foam soft or rough? Which is the value of a low-medium-high scale?) and which are the methods and tools used to define it. From a design point of view, it’s necessary to deal with the topic of sensory perception with scientific and interdisciplinary breadth.

This work will present a complex and wide range of methods and tools available on the market which could be used for sensory perception design in the meta-phase. In conclusion, some examples of the research carried out at the Politecnico di Torino will be briefly described in order to present the research that adopted these tools developed in MATTo DAD Department of Architecture and Design to define the perceptive characteristics of materials and products.

Possible methods and tools for perceptive evaluations
The evaluation of the “perceptive dimension” [Germak, 2013] of products consists of methods and tools (qualitative and quantitative) to measure the consumer’s “quali-quantitative” perception of the sensory characteristics of different products. Qualitative and descriptive analyses are strongly connected with human perception [Berglund et al., 2011]. This assumption discloses the matter of soft metrology. Soft metrology is defined as the set of measurement techniques and models which enable the objective quantification of properties which are determined by human perception. The “TASTER” ROLE What characterizes the complexity in perception is really the intrinsic multidimensional nature combined with a subjective attitude. Recently, sensory evaluation techniques have been developed to reveal detailed information about perception of products [Pagliarini, 2002]. Both in soft metrology and in sensory evaluation, the human being is accounted as the measuring instrument, thanks to his involvement in focus group and testing sessions.

The common denominator of the presented methods is involving a qualified sensory panel of people (the “tasters”, e.g. a group of experts, appropriately guided in acoustic sensory analyses) trained to detect and record sensory perceptions in standard test conditions. Similarly to a measuring instrument, the trained assessors provide accurate and statistically representative results, becoming in this research approach the real qualitative judges of the perceptive characteristics of the material/product in question. Devices are always used in the presented methods in combination with questionnaires, focus groups and semantic differentials: tools for sensory analyses are used as an additional instrument for assessing meta-project or product concepts to reinforce or weaken judgements, anticipating what could be the indications of choice made by the public for whom the product is intended. Finally, some applications of this method and these tools, even by matching two or more tools and senses (for example analysing sight and touch together) to the current and past researches unfolded in the MATTo materials library.
Sensory analysis allows describing products and materials from visual, auditory, olfactory, tactile and gustatory points of view, by the use of sensory vocabulary, value scales and specific tools for each sense:

<table>
<thead>
<tr>
<th>Evaluating sight qualities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pantone scale: proposes an excellent method to describe a colour based on sample comparison; it provides special colour selection tools including comparative tables and descriptions of the identified colour. In fact, the Pantone system works by comparing the material to be tested with samples provided by the company itself: once the chromatic reference is established, it is described using the code for each colour sample.</td>
</tr>
<tr>
<td>NCS Gloss Scale: based on NCS - Natural Colour System®, this scale is a tool that measures the qualitative brightness/opaqueness of surfaces (direct comparison between the material to be tested and the various samples provided) and their quantitative brightness/opaqueness (thanks to the measurement on the front of each sample provided with the tool). The gloss level can vary from 0 to 100: level 0 corresponds to a totally opaque surface, and 100 to a shiny glossy black sheet of glass.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluating hearing qualities</th>
</tr>
</thead>
<tbody>
<tr>
<td>SounBe: a toolkit and a method both developed in Politecnico di Torino as a support tool for those designers aiming at the right choice of the most suitable material to his design project [Dal Palù et al., 2014]. Following this method, they will be able to split the sound matter in main factors and gather some useful meta-project advice related to their needs. Finally, a new planning approach to sounding objects will generate new planned soundscapes, avoiding increasing noise pollution.</td>
</tr>
<tr>
<td>Tuning forks: sixteen tuning forks of different materials were developed at the Institute of Making (London) in order to test the comparative acoustic properties of different materials and to understand how these are experienced through perception [Laughlin & Howes, 2014]. The form is constant and the material changes: the acoustic/sound performances of the forks are different (and are judged different) according to the various physical parameters, density and elastic modulus.</td>
</tr>
</tbody>
</table>
| **Sound level meter**: is an instrument which measures sound pressure level, usually calibrated in decibels. By measuring sound pressure, the sound meter creates the signal to obtain the descriptor indexes typical of noise measurements: level of sound pressure (Lp), equivalent level of sound pressure
(L.Aeq), percentile levels (LN), etc. The market offers several sound measurement systems, even if each system can be schematically reduced to three components: a microphone, a data processing unit, and a data interpretation unit.

— **Voice gesture sketching tool:** this tool has been developed for sketching and improvising sonic interaction through voice and gesture: it has the capability of recording the voice through a microphone and a data interpretation unit; it has the capability of recording the voice through a microphone and a data interpretation unit; it has the capability of recording the voice through a microphone and a data interpretation unit; it has the capability of recording the voice through a microphone and a data interpretation unit.

— **Evaluating smell qualities**

— **Flavour wheel (Aromas):** derived from the original Flavour Wheel which Danish chemistry Morten Meilgaard conceived to facilitate the description of aromas and tastes by assessor ‘judges’, the aroma side of this tool has been applied to different products (e.g. coffee, wine) in order to better classify on three levels the aromas found. Very general terms are located in the centre, going to the most specific terms in the outer tier (for example: fruity aroma → citrus fruits → lemon; fruity aroma → soft fruits → black currents; woody aroma → resinous wood → oak; vegetal aroma → plants → eucalyptus, etc.).

— **Flavour wheel (Taste):** a fourth version of the wheel created by Morten Meilgaard is reserved for the following tastes: mouthfeel, bitter, salt, sweet, sour/acid, musty; always organized on three levels, from general terms in the centre of the wheel it’s possible to move to the most specific terms in the outer tier (for example in coffee taste wheel: sweet → mellow → delicate; salt → bland → neutral). Also in this case, different flavour wheels have been developed for food and drink, for example for coffee, beer or cheese.

— **Sensory Box Explorer:** developed by the Italian Centro Studi Assaggiatori, the Sensory Box Explorer is a toolkit born to stimulate active scent exploration, through which everyone can train their olfactory abilities. It comprises twenty olfactory standards which reproduce aromas present in ordinary life experiences of our society and representative of the main aromatic families (floral, fruity, green, spicy, etc.).

— **Electronic nose:** the electronic nose is a tool, which tries to replace the human olfactory system and make measurements objective. The sophisticated software developed for these ‘recreated noses’ is able to file and preserve the incredible number of perceived smells classified by the electronic nose.

Crossed-senses evaluation tools

Furthermore, sensory analyses are sinestesically ex-post validated through the use of specific equipment, which offers some important data regarding the user’s attention to the observed product (sub-
mitting real or virtual prototypes to tasters). This phase can be once more carried out using the previously presented tools or, specifically, adopting one of the following new tools to verify the consumer’s response to the submitted stimulus. The tools presented below stemming from different fields (psychology, visual systems, product, educational and market research) are proposed as support tools for design phases and a validation method for the sensory analysis completed by using the visual, auditory, olfactory, tactile and gustatory tools, also thanks to the use of qualitative and analytical methods such as questionnaires, focus groups and semantic differentials.

— **Eye tracking**: it provides robust data quality and state-of-the-art visualisations and metrics showing where, when and what people look at. The instrument features special glasses following eyeball movements, and a software decoding the data. All raw eye tracking data is easily exported for more in-depth analysis. (Image 13)

— **Revel**: a wearable tactile technology, based on Reverse-ElectroVibration, that modifies the user’s tactile perception of the physical world. Revel can add artificial tactile sensations to almost any surface or object, such as furniture, walls, wooden and plastic objects, and even human skin. As Bau and Pouparyev explained about Revel, surfaces are perceived in different ways, and this difference can be used for augmented reality [Bau & Pouparyev, 2012]. For example, a square wave feels more intense and sharper than a sine wave; the difference is comparable to sliding the finger on a grid of smooth versus sharp bumps; a sine wave; the difference is comparable to sliding a square wave feels more intense and sharper than an animation of dynamic facial, bodily, and vocal expressions [Crippa, Rognoli & Levi, 2012; Desmet, 2003; Lokman et al., 2013].

— **EEG**: Electroencephalograph is a measuring tool used in user experience researches. EEG data could be used by researchers [Zheng, Dong & Lu, 2014; Romano Bergstrom & Schall, 2014] in combination with eye-tracking data, to define interface areas that were looked at and that were emotionally engaging.

— **Face Reader**: developed by the Dutch company Noldus, this software has been developed to observe the instinctive response of a subject to a stimulus, but focusing specifically on the answer given by the facial expression. Thanks to a virtual network of 500 points, the software evaluates the relative position of points and the results in six expressions encoded using a shared meaning (amused, incredulous, angry, etc.). Even in this case, the software can be used to test the instinctive response to the stimulus from a point of view of both quality and quantity; (Image 14)

— **The Observer**: also this software has been developed by Noldus to allow the observation of a subject’s behaviour in a specific circumstance (for example in the purchase phase). Through the use of a webcam, the software allows collecting data about the gestures that the subject does, the observation time, the phase of reflection on the product by comparing them with the trend generated by the set of subjects analysed. It is a particularly significant part of the marketing, but may be used in general to evaluate the subject’s response to any stimulus.

— **PrEMO**: it is a tool designed in order to assess emotions evoked by products. PrEMO is a non-verbal self-report instrument designed to understand and evaluate the emotional response to customer products. Instead of relying on the use of words, respondents can report their emotions with the use of expressive cartoon animations. In the instrument, each of the fourteen measured emotions is portrayed by an animation of dynamic facial, bodily, and vocal expressions [Crippa, Rognoli & Levi, 2012; Desmet, 2003; Lokman et al., 2013].

Conclusion

This quick overview aims to recall just some of the design tools available to designers in order to address the issue of multisensory products. Every tool has specific strengths and weaknesses. Some of the tools are more “designer-oriented”, others may not be so easy to use, but the main purpose of this collection is to make readers consider the range of possible research paths on the theme of perception.

At the Politecnico di Torino (DAD Department of Architecture and Design) during different research initiatives carried out in the last years [Ailon et al., 2012] has been presented a method that integrates qualitative and quantitative tools and techniques (for example, from Sounbe, to questionnaires, semantic differentials, brainstorming, etc.) in order to help designers create products that satisfy the user’s demand for perceived quality: this method (Image 15) has been used to perform the analysis on car seat concepts [Lerma & De Giorgi, 2011] from the tactile and visual point of view, to analyse packaging and the assessment of perceived sustainability [Lerma, De Giorgi & Gemark, 2015] and to understand the perception of sustainable luxury.

Furthermore, there is no perfect tool for all applications. It’s up to the designer to interpret the research question and to focus his research towards the most suitable tool for this project. In fact, for
The main brief of the sensory research has to be very clear to the designer, as well as the results he/she wants to obtain from the research itself. Finally, both the multiplicity of the application fields and the dual approach (both qualitative and quantitative) represent these tools and methods represent the main strength for sensory, perceptive and synesthetic researches, and an interesting starting point to deal with material (product) sensoriality.

Bibliography

